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ABSTRACT 

 

Connectivity has been proposed as a criterion for functional-anatomic segregation of cortical areas. In 

this thesis, I present a new method of characterizing the DTI-based connectivity profile of cortical 

voxels using Gaussian mixture models (GMMs). A variety clustering techniques are applied to perform 

the connectivity-based parcellation (CBP). I first parcellated the human inferior parietal lobule (IPL) on 

connectivity profiles using spectral clustering and a hidden Markov random field (HMRF) model. I 

applied our approach to multi-subject parcellation. I then segmented other cortical areas such as 

precentral and postcentral cortex, using spectral non-parametric Bayes models. A new approach 

resolving crossing fibers with compressed sensing (CS) was also examined.  

Using the multi-subject GMM-HMRF approach, results in a smoother segmentation of IPL that is 

independent of the set of subjects and visually consistent with the Juelich Atlas. The spectral non-

parametric Bayes models enable data learn the number of segments automatically. The compressed 

sensing method is shown to significantly reduce the amount of data required and the computing time 

while preserving the accuracy. 
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Chapter 1    INTRODUCTION 
 

The cortical field hypothesis states that human cerebral cortex is a mosaic of subregions, each with a 

specific structural and functional pattern (Zilles, et al., 2010).  Brodmann’s (1909) seminal work 

parcellated the cerebral cortex using cytoarchitectonics. Cellular microstructure, however, is only one 

structural feature, and brain function is dependent on both cytoarchitectonics and inter-region 

connectivity working together. 

Diffusion tensor imaging (DTI) has made it possible to characterize and visualize the organization of 

white matter fiber traces in human. With the help of this modality in conjunction with probabilistic 

tractography (Basser, et al. 2000), one can decide whether an individual voxel of brain is connected to 

others. Recently, a number of studies have used diffusion weighted MRI to study the subdivision of 

cortex via connectional anatomy. This approach, connectivity-based parcellation (CBP), assumes that 

adjacent cortical voxels having similar connectivity patterns (tractogram) are part of one subregion 

(Johansen-Berg, et al, 2004).  While the cytoarchitectonic work and DTI cannot be done in the same 

individuals, the results in selected brain areas, such as the inferior parietal lobule, below, are similar, 

suggesting that DTI may provide an approximate guide to cortical parcellation in vivo. The 

identification of connectional disparate sub-regions or human cortex is an important aspect of 

neurosciences and clinical surgery. 

In the work reported here, we for the first time estimated tractograms with a Gaussian Mixture Model 

(GMM). A novel and efficient distance metric, the earth mover’s distance was applied to the 

measurement of the similarity between connectivity patterns. Then a variety of clustering approaches 

were performed to segment the regions of interest (ROI). These techniques reveal some interesting 

features of the connectional anatomy of human cortex and proved to be efficient ways to practice CBP. 

A new method using compressed sensing to resolve crossing fibers of DWI images is also examined. 

1.1 Background 
 

In-vivo segregation of cerebral cortex into distinct functional sub-divisions is a significant task in 

neuroscience. This sub-division is usually referred to as “cortex parcellation”. Under the premise that 

structure reflects function, understanding the structural organization of cortex is crucial for study brain 

functionality. Structural identification of functional imaging data has long been based on the 

cytoarchitectonic map developed by Brodmann in 1909. In recent years, connectivity-based 

parcellation (CBP) has become a popular approach to segmenting gray matter structures including 

thalamus and cerebral cortex, which exploits diffusion weighted MRI to reveal the distinct connectivity 



www.manaraa.com

 5 

patterns of each sub-division. CBP rests on the assumption that spatially contiguous voxels share 

common connectional profiles, which leads to common functionality (Anwander, et al, 2006).  

Connectivity-based parcellation also has clinical interest. Abnormal connectivity patterns in cingulate 

subregions have been observed in diseases such as Alzheimer’s disease, depression, schizophrenia, and 

obsessive compulsive disorder (Rosenberg, et al., 2004; Gotlib, et al., 2005; Kubicki, et al., 2005; 

Naggara, et al., 2006). Preterm infants have microstructural differences in cerebral white matter 

compared to term-born control infants in the absence of focal abnormalities (Anjari, et al., 2007). 

Among the clinically significant regions of interest (ROI) are the inferior parietal lobule (IPL) and 

pre/post central gyri. IPL is involved in the perception of emotion in facial expressions, the 

interpretation of sensory information, spatially directed attention, phonological processing and other 

aspects of language (Radua, et al, 2010). The parcellation of IPL has been of great interest because of 

its functional and anatomical heterogeneity (Caspers, et al, 2011). The pre central and postcentral areas 

are highly related to the primary motor cortex and primary somatosensory cortex, respectively. The 

precentral gyrus is the main motor center planning and executing body movements; the postcentral 

gyrus is responsible for collecting and processing the sensory information from skin and from the 

spindle organs (Catani, et al., 2012). They have drawn particular attention from researchers for their 

interaction in neural connection. 

Connectivity patterns were modeled as connectivity profiles  (Anwander, et al, 2007) or 

fingerprints (Beckmann, et al, 2009), defined by the probabilities of connection between a cortical 

“seed” voxel and a set of predefined target regions. We have modified the existing CBP approaches by 

defining a connectivity pattern directly as a histogram of target voxel locations. A similarity matrix 

generated from such connectivity profiles is then segmented using clustering techniques such as 

spectral clustering (Shi & Malik, 2000), hidden Markov random fields (Zhang, et al, 2001) and non-

parametric Bayes models (Murphy, 2012). Different clustering methods were applied to fit a variety of 

problems.  

The modality we use in this research, diffusion tensor imaging (DTI), is limited in regions of crossing 

fibers. Most of the methods to resolve fiber crossing requiree large number of scan gradients and high 

b-values (Tuch, et al., 2002; Frank, et al., 2002; Tournier, et al., 2004), which is problematic for 

clinical time and hardware. We investigated a newly proposed approach (Landman, 2012), involving 

compressed sensing (Donoho, 2006). The number of gradients is expected to be highly reduced by 

employing this method. 
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1.2 Objectives 
 

The main aspect of this thesis is to model tractograms with Gaussian mixture models, to compute the 

distance matrices between tractograms using  a variety of metrics, and then to parcellate ROIs based on 

the distance matrices. Various clustering techniques are tested for parcellation: with a prior knowledge 

of the number of parcels (IPL), spectral clustering is used to solve the distance based clustering 

problem; for areas without a definite cluster number, such as pre/post central, we employ non-

parametric Bayes approaches like Dirichlet process model to segment seed voxel and decide the proper 

number; hidden Markov random fields are mainly used to denoise the clustering obtained from the two 

methods mentioned. 

Due to high heterogeneity of IPL, we also wished to develop a connectivity-based atlas built from 

multiple subjects. The CBP of the pre/post central area is focused on understanding the driving forces 

of parcellation in connectional structure. 

I will also demonstrate the viability and efficiency of compressed sensing in resolving crossing fibers. 

1.3 Organization 
 

The structure of the thesis aims to explain the fundamental concept used in the connectivity modeling 

and segmentation of ROIs. The thesis is composed as follow: 

• Chapter  1: Introduction, motivation and objectives of the project. 

• Chapter 2: This chapter gives a general background of connectivity modeling, such as 

probabilistic tractography and Gaussian mixture models. 

• Chapter 3: This chapter briefly introduce the clustering techniques used in this project, 

including spectral clustering, hidden Markov random fields  and Dirichlet process model 

• Chapter 4: A summary of Landman's method in resolution of crossing fibers is given in this 

chapter. I will describe the implementation and verification of this method. 

• Chapter 5: Methodology 

• Chapter 6: Results of experiments are presented and analysed. 

• Chapter 7: Conclusion including the summary of the work done also the review of the future 

work is stated. 
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Chapter 2  MODELING OF CONNECTIVITY 
 

Before entering into detailed connectivity-based parcellation, this chapter brings general background 

information about the diffusion tensor imaging, probabilistic tractography and the Gaussian mixture 

model of connectivity patterns. 

 

2.1 Diffusion Tensor MRI 
 

Diffusion tensor MRI (DTI)  is the first noninvasive in vivo imaging modality which enables 

researchers to generate fiber-tract trajectories in soft fibrous tissues, such as nerves, muscles, ligaments, 

tendons, etc. (Basser, et al., 1994). Diffusion contrast is based on the self-diffusion of water molecules 

in tissue. (Le Bihan, et al., 1986). A diffusion-weighted pulse sequence is constructed by the addition 

of a pair of diffusion-sensitizing gradients, also known as motion-probing gradients, to a T2-weighted 

spin-echo sequence.  This is known as Stejskal-Tanner diffusion encoding (Stejskal & Tanner, 1965). 

Molecular motion thus results in loss of signal intensity due to incomplete rephasing of water proton 

spins, which change position between and during the applications of the 2 diffusion-sensitizing 

gradients. This diffusion-weighted contrast can be fit to an exponential model (Stejskal-Tanner tensor 

model):  

Si = S0 !e
"b!ADCi        (2.1) 

where Si is the diffusion-weighted (DW) signal intensity observed at a given voxel with the diffusion-

sensitizing gradients applied along direction i, and S0 is the signal intensity at the same voxel measured 

without diffusion-sensitizing gradients. The apparent diffusion coefficient (ADC) is the diffusion 

constant measured in the clinical setting, reflecting the limitation that in vivo diffusion cannot be 

separated from other sources of water mobility, and ADCi is the ADC in the i direction. The b factor 

within the exponential term is a measure of diffusion- weighting that is a function of the strength, 

duration, and temporal spacing of the diffusion-sensitizing gradients. 

In equation (2.1), ADCi is the ADC of water along the direction of the diffusion- sensitizing gradient. 

Higher ADC values imply greater rates of water diffusivity along direction i in the tissue. ADC values 

can be calculated from DWI by rearranging equation (2.1) 

       (2.2) 

  

If we conceptualize ADC as a tensor in 3-dimensional space, it can be represented by a 3×3  matrix: 

ADCi =!ln Si / S0( ) / b
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Where R is the rotation matrix,  !1 ,!2 , and!3 are the eigenvalues of diffusion tensor. Figure 2.1 gives 

an intuition of the information provided by the diffusion tensor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 (Mukherjee, 2008). The diffusion ellipsoids and tensors for isotropic unrestricted diffusion, 

isotropic restricted diffusion, and anisotropic restricted diffusion are shown.  

 

The tensor model was developed to characterize diffusion in anisotropic tissues, where the diffusion 

coeficient is represented by a 3×3 matrix instead of a scalar due to its directional dependence. 

Fractional anisotropy (FA) is defined to describe the isotropic character of voxel: 

 

       (2.3)  

 

for eigenvalues  !1 ,!2 , and!3 and mean diffusivity ! . FA ranges from 0 (isotropic) to 1 (maximally 
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anisotropic). 

 

2.2  Probabilistic tractography 
 

The objective of DTI fiber tracking is to determine intervoxel connectivity on the basis of the 

anisotropic diffusion of water (Mori, et al., 1999). Diffusion weighted imaging is only sensitive to 

motion of water molecules that is aligned with the motion-probing gradients. In gray matter, since 

diffusion is roughly isotropic, changing the direction of the gradient does not substantially affect the 

signal. On the contrary, water diffusion in white matter is often strongly anisotropic and occurs 

maximally in the same orientation as white matter tracts (Moseley, et al., 1991). The basic idea of 

tracking fiber tracts with DWI rests on the above fact and the assumption that the dominant direction of 

axonal tracts can be assumed to be parallel to one of the eigenvectors of the diffusion tensor. 

DTI fiber tracking algorithms can be categorized as deterministic and probabilistic. 

Fiber assignment by continuous tracking (FACT) is a deterministic method (Basser, et al., 2000). 

FACT tracks fiber trajectories by following the primary eigenvector from voxel to voxel in 3 

dimensional space. Constraints on the maximum curvature of the streamline between successive voxels 

and on the minimum FA within a voxel for continued propagation of the streamline can be applied in 

order to guarantee the fiber goes to regions of the brain where the white matter pathways are 

realistically represented by  the diffusion tensor model. 

The deterministic tracking technique is limited due to the uncertainty in the fiber orientation caused by 

noise, patient movement and imaging artifacts (Anderson, 2001). 

Probabilistic tractography methods, on the other hand, incorporate the expected uncertainty into the 

tracking mechanism. Probabilistic tracking techniques tend to disperse trajectories more than 

deterministic methods and have the potential to delineate a greater portion of a white matter tract.  

One of the main confusion of fiber tracking comes from regions of crossing fibers. The typical 

diffusion tensor model is unable to accurately characterize such regions. Multiple tensor fitting 

algorithms (Tuch, et al., 2002; Hosey, et al., 2005; Behrens, et al., 2003) provide discrete fiber 

orientations, but tend to perform poorly when more than two fiber orientations are present. Tournier 

and his colleagues (2004) introduced a concept of fiber orientation distribution (FOD) or orientation 

density function (ODF) to model the diffusion attribute of voxels. They estimate FOD using spherical 

deconvolution (SD) methods. Spherical deconvolution allows more arbitrary FODs than a 3-

dimensional tensor model, which enables the probabilistic tractography to be more flexible and reliable 
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within crossing fiber regions. 

With the help of the continuous fiber orientation distribution, the probabilistic tractography algorithm 

can be described by a model of randomly walking particles (Anwander, et al., 2007). Imagine a particle 

starting from a seed voxel A, moving in a random manner from voxel to voxel. The transition 

probability to a neighboring voxel depends on the FOD based on the local diffusivity profile that is 

modeled from the DTI measurement. This FOD yields higher transitional probabilities along directions 

with high diffusivity, that is, the presumed fiber directions. Hence, the particle will move with a higher 

probability along a fiber direction. If we perform this ‘trial’ many times and count how often particles 

from voxel A reach a target voxel B, we obtain a relative measure of the probability of tracing a 

pathway between the 2 voxels. 

In this project, we perform probabilistic tractography using the open source package MRtrix 

(http://www.brain.org.au/software/mrtrix/), which is implemented based on Tournier's approach. 

 

2.3 Gaussian Mixture Model of Tractograms 
 

Researchers tend to propose certain mathematical models to characterize the result of a tractography. 

Such models of connectivity patterns are usually referred to as “tractograms”. In previous research, 

tractograms were modeled as connectivity histograms or “profiles” (Anwander, et al., 2007) or as 

“fingerprints” (Beckmann, et al., 2009), defined by the probabilities of connection between a cortical 

voxel and a set of predefined target regions. Such tractograms can be obtained by running probabilistic 

tractography repeatedly from seed voxels within ROIs. As a result, the connectivity pattern of a seed 

voxel is reduced to a vector of probabilities.  

The connectivity profile model, however, suffers a limitation that predefined target regions are needed, 

which requires the prior knowledge of segmentation of brain. This results in a 'chicken-egg' problem in 

CBP: we need a segmentation of brain in order to obtain the segmentation of brain. 

To overcome this drawback, we propose a new representation of tractograms: Gaussian mixture model 

(GMM). GMMs are parametric probability density functions that have been shown to be useful in 

approximating densities with complicated shapes (Bishop, 2006). We directly model the tractograms of 

seed voxels as a distribution of points in 3D image space using GMMs. Figure 2.2 offers an intuitive 

picture of the distribution of the end of tracks and the reconstructed GMMs of three random seed 

voxels. The rest of this chapter will give a brief introduction to GMMs and their implementation. 
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2.3.1 Gaussian Mixture Model 

 

The Gaussian mixture model is the most popular mixture model, which is also called mixture of 

Gaussian (MOG). GMM is a linear superposition of normal distributions. It was developed to provide a 

richer class of density function than a single Gaussian (Bishop, 2006). In this model, each base 

distribution of the mixture is a multivariate Gaussian with mean µk and covariance !k . Thus the model 

has the form 

p(x) = ! kN(x |µk,!k )
k=1

K

"      (2.4) 

subject to the constraint  

 

 ! k
k=1

K

! =1,! k " 0       (2.5) 

Each Gaussian in the (2.4) is called a component of the mixture. For the case of a d dimensional 

variable x, the Gaussian distribution with its own mean µk and covariance !k is defined by 

 

N(x |µk,!k ) =
1
2!

| !k |
"
d
2 exp(" 1

2
(x "µk )

T !k
"1(x "µk ))    (2.6) 

 

The graphical representation of a Gaussian mixture model is shown in Figure 2.3. 

c b 

f 

a 

d e 

 

Figure 2.2. Three randomly selected 
tractograms (top) and their GMMs 
(bottom). The red dots are the means of the 
GMM components. 17 components were 
used to model these sample distributions; 
parcellation results are relatively 
insensitive to this number. 
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The observation xi ! X = (xi, x2,..., xN )  is statistically independent. The joint conditional density of the 

data set X is: 

p(X |!,") = p(xi |
i=1

N

# !," ) = ! kN(xi |" k )
k=1

K

$
%

&
'

(

)
*

i=1

N

#     (2.7) 

where ! k = {µk,!k}  

Gaussian mixture models provide a practical data-driven, semiparametric framework to approximate 

unknown distributions. GMM can be viewed as a compromise between (a) single Gaussian for which 

K=1, and (b) the kernel density estimator (Silverman, 1986) for which K=N, the number of data points. 

The single Gaussian distribution is incapable of modeling highly skewed or multimodal data. The 

kernel density estimator, on the other hand, requires one to retain all N data points for the purpose of 

inference, which is a computationally consuming task. GMMs are popular because theyeffectively 

parameterize the data, while retaining the accuracy to characterize complex distributions. 

                                    
 

2.3.2 The Expectation Maximization (EM) Algorithm 

 

In order to find the maximum likelihood for a GMM, a powerful yet elegant tool, the expectation 

maximization (EM) algorithm, is often used to determine the model parameters (Dempster , et al., 

1977; Mclachlan & Krishnan, 2003). 

The log-likelihood of GMM, given Eq (2.7) is as follow: 

L(!," | X) = ln p(X |!,")

= ln p(xi |
i=1

N

# !," ) = ln ! kN(xi |" k )
k=1

K

$
%

&
'

(

)
*

i=1

N

$
 

    (2.8) 

 

 

 

 

Figure 2.3. The graphical model 
of a Gaussian mixture model for a 
set of N data points 
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Taking the derivatives of L(!," | X)  in Eq 2.8, with respect to µk and setting to zero, we obtain 

!L(",# | X)
!µk

= $
! kN(xi |µk,%k )
! kN(xi |µk,%k )k&i=1

N

& %k (xi $µk ) = 0     (2.9) 

 

Let z ! {0,1}  be a assignment variable, such that zk is equal to 1 and all other elements are equal to 0, 

zk
k=1

K

! =1 . We define the joint distribution p(x, z)  in terms of a marginal distribution p(z)  and a 

conditional distribution p(x | z) . The marginal distribution over z is specified in terms of ! k , such that 

p(zk =1) = ! k  

Similarly, the conditional distribution of x given a assignment value for z is a Gaussian  

p(x | zk =1) = N(x |µk,!k )      (2.10) 

And the marginal distribution of x is given by Eq (2.4). Based on Bayes’ rule, the posterior 

probabilities of z given x, denoted by zik , can be obtained: 

zik = p(zk =1| x) =
p(zk =1)p(x | zk =1)

p(zk =1)p(x | zk =1)
k=1

K

!
=

! kN(x |µk,"k )

! kN(x |µk,"k )
k=1

K

!
   (2.11) 

Note that the posterior probabilities zik appear in Eq(2.9). Solving Eq(2.9) yields the optimal µk  

µk =
zik xi

i=1

N

!

zik
i=1

N

!
     (2.12) 

Once we set the derivative of L(!," | X)  with respect to !k , we can solve the optimal !k following 

the similar manner 

!k =
zik (xi "µk )(xi "µk )

T

i=1

N

#

zik
i=1

N

#
   (2.13) 

Finally, we determine the optimal mixture fraction ! k  by maximizing L(!," | X) . Considering the 

constraint of mixture faction in Eq(2.5), maximize L(!," | X)  plus a Lagrange multiplier: 

 L(!," | X)+!( " k
k=1

K

# $1)       (2.14) 
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Maximizing Eq (2.14) gives  

! = !
N(xi |µk,"k )
N(xi |µk,"k )k#i=1

N

# = !
zik
" ki=1

N

#   (2.15) 

Replacing this result with !  in Eq(2.14) we obtain  

 ! k =
1
N

N(xi |µk,!k )
N(xi |µk,!k )k"i=1

N

"       (2.16) 

 

Note the maximum likelihood results (2.12), (2.13), and (2.16) are not close-form solutions to the 

parameters of the mixture model. However, the EM algorithm describes an iterative procedure for 

estimating the parameters, which maximize the likelihood of the currently available data. The iterative 

scheme works as follows: first we choose some initial values of the parameters; then we alternatively 

update them with the E step and M step. In the E step, namely expectation step, we evaluate the 

posterior probabilities with current estimate of parameters, using Eq (2.11). Then for the M step, or 

maximization step, we re-estimate and update of the mean, covariance, and mixture fraction using 

(2.12), (2.13), and (2.16). McLachlan and Krishnan (2003) have shown that each of the E and M step is 

guaranteed to increase the log-likelihood function, L(!," | X) . And the algorithm is guaranteed to 

converge to a local optimum of the mixture model. In practice, we repeat the alternate updates until the 

difference between two consecutive estimates falls below certain threshold.  

In general cases the E step and M step can be identified as: 

• E step: Given the present parameter estimate !(t ) , the expectation of the posterior distribution is 

U(!;! (t ) ) = E[ p(Z | X,! (t ) ) ln p(
Z! Z | X,! )]      (2.17) 

• M step: Update the estimate for the parameters !(t+1) , by maximizing the expectation form 

 ! (t+1) =
!

argmaxU(!;! (t ) )       (2.18) 

With the help of EM algorithm, parameters of the Gaussian mixture model can be quickly inferred. We, 

however, also notice that the estimate of EM algorithm is only guaranteed to converge to the local 

stationary point, instead of a global optimum. Thus, for a likelihood function with multiple stationary 

points, either local or global possibly, the convergence depends on the initial choice of the parameters. 

In this project, using the Gaussian mixture pipeline provided by MATLAB©, we apply two means to 

increase the chance for reaching the global optimum: first we select the initial parameters randomly 

from the data set, and spread them as possible; second we run the algorithm for several times and 
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choose the parameters resulting in the maximum likelihood. Once we obtain the GMM presentation of 

the tractograms, we calculate the pairwise distance between the GMMs of voxels. The distance metrics 

we use is the earth mover’s distance (EMD) (Rubner, et al., 2000). The EMD corresponds to the cost of 

moving ‘material’ from one distribution to another, and is computed using linear programming 

methods for transportation problems. The distributions can be sampled from the GMM of the 

tractogram rather than the tractogram itself.  Applying the distance metrics, we thus obtain a distance 

matrix, which can be used for clustering. 
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Chapter 3  CLUSTERING TECHNIQUES 
 

Three clustering techniques will be introduced in this chapter: spectral clustering, hidden Markov 

random fields model, and non-parametric models. The three methods apply to particular clustering 

cases based on their characteristics. And in some situation more than one method are used 

simultaneously.  

 

3.1 Spectral Clustering  
 

The nature of connectivity-based parcellation can be viewed as the clustering of voxels of ROI in a 

high-dimensional ‘connectivity space’; tractograms, or connectivity patterns, are the features in this 

space.  It is hard to identify these ‘points’ with a vector as we do in a Euclidean space, but we are able 

to define and compute the pairwise distance (similarity) between points as explained in the previous 

chapter. Spectral clustering methods have the benefit of allowing us to include arbitrary features for 

representing data. It is classified as a distance-based clustering approach. They assume that the data lie 

on a low-dimensional manifold but are represented in a high-dimensional feature space (Socher, et al., 

2011). As a result of this property, spectral clustering and its derivatives have become one of the 

emerging techniques for medical image segmentation. In order to recover the underlying cluster 

structure they perform the following steps. First, the connectivity features of each voxel are used to 

compute a pairwise distance (similarity) matrix. Second, this matrix is then used to map the 

observations from this implicit representation into a lower dimensional Euclidean space. Third, in this 

space most methods apply model-based clustering methods such as k-means, fixing the number of 

clusters by hand (Luxburg, 2007). In this project, after conducting the first two steps above, the 

segmentation is completed with various model-based clustering methods according to the purpose of 

the experiment. The following description of spectral clustering is mainly borrowed from Luxburg’s 

tutorial in 2007. 

 

3.1.1 Similarity Graphs 

 

Given a set of data points x1, …, xn and some notion of similarity sij ≥ 0 between all pairs of data points 
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xi and xj, the data set can be represented in a graphical point of view. We define a similarity graph 

G=(V, E).  Each vertex vi represents a data point xi; the edge is weighted by sij, if sij is strictly positive. 

Thus the problem of clustering can now be reformulated using the similarity graph: we want to find a 

partition of the graph such that the edges between different groups have very low weights (which 

means that points in different clusters are dissimilar from each other) and the edges within a group have 

high weights (which means that points within the same cluster are similar to each other). The partition 

of the graph is often called a cut. Figure 3.1 gives an illustration of this process. 

 
Let G = (V, E) be an undirected weighted graph with vertex set V = {v1, . . . , vn}, the weight is denoted 

by wij ≥ 0. The weighted adjacency matrix of the graph is the matrix W = (wij)i,j=1,...,n. If wij = 0 this 

means that the vertices vi and vj are not connected by an edge. As G is undirected we require wij = wji, 

which means the adjacency matrix is symmetric. The degree of a vertex vi ∈ V is defined as  

di = wij
j=1

n

!                   (3.1.1) 

The degree matrix D is defined as the diagonal matrix with the degrees d1, . . . , dn on diagonal. For two 

not necessarily disjoint sets A, B ⊂ V we define  

W (A,B) = wij
i!A, j!B
"                                        (3.1.2) 

We consider two different ways of measuring the size of a subset A ⊂ V 

|A|: = the number of vertices in A  

vol(A) := di
i!A
" = wij

j=1

n

"
i!A
"  

|A| is called cardinality of A, while vol(A), or volume of A, measures the size of A by summing over the 

weights of all edges attached to vertices in A. 

 

Figure 3.1. First arrow: graph 
representation of the data 
point. Second arrow: 
partitioning the graph by 
finding the minimum cuts 
(Image from Liu’s lecture) 
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3.1.2 Graph Laplacian  

 

Spectral clustering is motivated by spectral graph theory (Chung, 1997), whose major tool is the graph 

Laplacian matrix.  

Unnormalized: The unnormalized graph Laplacian matrix of G = (V, E) is defined as 

L = D – W  (3.1.3) 

The matrix L has the following properties: 

1. L is symmetric and positive semi-definite.  

2. L has n non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . ≤ λn,  λ1’s corresponding 

eigenvector is the constant one vector 1. 

3. For every vector f !"n  we have 

f 'Lf = 1
2

wij ( fi ! f j )
2

i, j=1

n

"    (3.1.4) 

4. Invariance to self-edges. The unnormalized graph Laplacian does not depend on the diagonal 

elements of the adjacency matrix W, for Lij =
di !wii, (i = j)
!wij, (i " j)

#
$
%

&%
 

The unnormalized graph Laplacian and its eigenvalues and eigenvectors can be used to describe many 

properties of graphs (Mohar, 1997). One significant example is the following:  

Proposition 1 (Number of connected components and the spectrum of L) Let G be an 

undirected graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of L 

equals the number of connected components A1, . . . ,Ak in the graph. The eigenspace of 

eigenvalue 0 is spanned by the indicator vectors 1A1 , . . . , 1Ak of those components.  

 

This proposition is extremely useful in practice. For example, one can decide the number of clusters by 

finding the eigenvalues of L that are equal or very close to zero. 

 

Normalized: There are two matrices which are called normalized graph Laplacians in the literature. 

Both matrices are closely related to each other and are defined as 

Lsym  := D!1/2LD!1/2  = I -D!1/2WD!1/2   (3.1.5) 
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Lrw  := D!1L = I -D!1W   (3.1.6) 

We denote the first matrix by Lsym as it is a symmetric matrix, and the second one by Lrw as it is closely 

related to a random walk. In the following we summarize several properties of Lsym and Lrw.  

Proposition 2 (Properties of Lsym and Lrw) The normalized Laplacians satisfy the following properties:  

1. For every f !"n
 we have  

  f 'Lsym f =
1
2

wij (
fi
di
!

f j
d j
)2

i, j=1

n

"
 (3.17)

 

2. λ is an eigenvalue of Lrw with eigenvector u if and only if λ is an eigenvalue of Lsym with 

eigenvector w = D1/2 u.  

3. λ is an eigenvalue of Lrw with eigenvector u if and only if λ and u solve the generalized eigen 

problem Lu = λDu.  

4. 0 is an eigenvalue of Lrw with the constant one vector 1 as eigenvector. 0 is an eigenvalue of 

Lsym with eigenvector D1/21. 

5. Lsym and Lrw are positive semi-definite and have n non-negative real-valued eigenvalues 0 = 

λ1 ≤ . . . ≤ λn. 

As it is the case for the unnormalized graph Laplacian, the multiplicity of the eigenvalue 0 of the 

normalized graph Laplacian is related to the number of connected components:  

Proposition 3 (Number of connected components and spectra of Lsym and Lrw) Let G be an undirected 

graph with non-negative weights. Then the multiplicity k of the eigenvalue 0 of both Lrw and Lsym 

equals the number of connected components A1, . . . , Ak in the graph. For Lrw, the eigenspace of 0 is 

spanned by the indicator vectors 1Ai spanned by the vectors D1/21Ai . 

 

3.1.3 Spectral Clustering Algorithm 

 

Suppose we would like to cluster n data points x1, …, xn , and a similarity matrix S = {sij }, sij ≥ 0. We 

describe the spectral clustering algorithm based on the settings above.  
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A pair-wise distance matrix of the connectivity patterns and the matrix after applying spectral 

clustering are shown in Figure 3.2. The ROI is right hemisphere inferior parietal lobule (IPL) of one 

subject with 797 voxels. The Laplacian used the symmetric normalized Laplacian. 

                                             

 

3.2 Hidden Markov Random Fields Model 
 

The Markov random field (MRF) model has gained huge popularity in computer vision problems, such 

as denoising (Besag, 1986), restoration (Geman & Geman, 1984), and segmentation (Li, 1995). Since 

Zhang, et al. (2001) introduced a derivative of MRF, hidden Markov random field (HMRF) model into 

brain MR image segmentation, HMRF has proved itself particularly efficient for the problems in 

medical imaging. A Hidden Markov random field model is a graphical probability model in which the 

true states are not observed but are estimated indirectly through an observation field. In an HMRF 

model, we assume that the spatial information is encoded via the interaction of adjacent sites; the 

segmentation of the image, although unobservable, can be indirectly estimated from the observations 

Input: Similarity matrix , number of clusters k.  
• Construct a similarity graph by one of the ways described in Section 2. Let W be its weighted 
adjacency matrix.  
• Compute the Laplacian: unnormalized L (3.13) or normalized Lsym (3.15) or  Lrw (3.16).  
• Compute the first k eigenvectors u1, . . . , uk of L (Lsym , Lrw).  
• Let be the matrix containing the vectors u1, . . . , uk as columns.  
• For i = 1, . . . ,n, let  be the vector corresponding to the i-th row of U.  
• Cluster the points (yi)i=1,...,n with the k-means algorithm into k clusters C1, . . . , Ck.  
Output: Clusters C1, . . . , Ck 

Spectral 
Clustering 

a b 

Figure. 3.2. Dissimilarity matrices of 797 voxels from 1 subject. (a) Matrix of 
the pair-wise EMD distance between connectivity patterns of seed voxels; (b) 
Reordered matrix after performing spectral clustering on the voxels. 
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(Zhang, 2001). Figure 3.3 illustrates the implication of HMRF.  

 

 

 

 

3.2.1 MRF Theory 

 

The most used imaging encoded model is the contextual constraint. MRF theory provides a convenient 

and consistent way to model context-dependent entities such as image pixels and correlated features 

(Zhang, 2001).  

In an MRF, the sites S are related to one another via a neighborhood system N = {Ni, i ! S} , where Ni 

denotes the sites adjacent to voxel i. A stochastic field X is said to be an Markov random field if for all 

i ! S  

P(xi | xS!{i} ) = P(xi | xNi )      (3.2.1) 

Eq (3.2.1) implies that in a MRF, the value of voxel i ! S is independent from the neighboring voxels 

given its neighborhoods. MRF theory generates from the theorem of Markov chain. This thought 

significantly reduces the dependencies within a random field by taking advantage of the conditional 

independency, which in practice leads to tremendous decrease in computational complexity. 

According to the Hammersley–Clifford theorem (Besag, 1974), an MRF can equivalently be 

characterized by a Gibbs distribution: 

                     P(x) = Z !1 exp(!U(x))      (3.2.2)  

where Z is a normalization constant and U(x) is an potential function. 

 

 

X: underlying field containing 
the labeling information of each 
voxel 

Y: features observed from 
the image 

Figure 3.3. Intuition of HMRF. The values of voxels in the image space (Y) are encoded 
through the mutual influences of neighboring voxels. The classification of voxels (X),  
which is latent, can be inferred from the observable features 
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3.2.2 HMRF Model 

 

The concept of hidden Markov random field model is derived from Markov random field (MRF) model 

and hidden Markov models (HMM), which are defined as stochastic processes generated by a Markov 

chain whose state sequence cannot be observed directly, only through a sequence of observations. Each 

observation is assumed to be a stochastic function of the state sequence. The underlying Markov chain 

changes its state according to a transition function. HMRF extends HMM from a 1-dimensional 

Markov chain to higher-dimensional spaces; extends MRF by introducing hidden, or latent, variables. 

In a HMRF model, there’s an observable random field y = (y1, . . . , yN) where each yi is the feature 

value of a voxel in our problem. The goal is to infer a hidden random field x = (x1, . . . ,xN) where xi ∈ 

L. In the image segmentation context, xi is a configuration of labels and L is the set of all possible labels 

(e.g. cortical fields in our application).  

Conditional independence: Besides the conditional independencies in (3.2.1), an HMRF also holds 

conditional independencies between x and y: 

P(y | x) = P(yi | xi )
i!S
"    (3.2.3) 

Thus the joint probability is 

P(y, x) = P(y | x)P(x) = P(x) P(yi | xi )
i!S
"   (3.2.4) 

 

Given xi’s neighborhood configuration xNi, according to the local conditional independencies of MRFs, 

(3.2.4) can be rewritten as 

P(yi, xi | xNi ) = P(yi | xi )P(xi | xNi )   (3.2.5) 

This way the joint distribution of (y, x) has been highly decoupled. If we further the assume that y is 

drawn from a probability function f (y;l,! ) , with parameter set !  and l ! L , we can obtain the 

marginal distribution of yi 

p(yi | xNi ,! ) = p(yi, l | xNi ,! )
l!L
" = f (yi;!l )p(l | xNi )

l!L
"   (3.2.6) 

 

3.2.3 Estimating HMRF Using EM Algorithm 

 

According to the MAP criterion, we seek the labeling x* which satisfies 
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x*=
x

argmax{P(y | x,!)P(x)}    (3.2.7) 

The prior probability P(x) is a Gibbs distribution (3.2.2), and the joint likelihood probability is 

P(y | x,!) = P(yi | x,!)
i
" = P(yi | xi,!xi

)
i
"    (3.2.8) 

where P(yi | xi,!xi
) is a Gaussian distribution with parameters !xi

= (µxi
,!xi

) . 

Similar to the inference of the Gaussian mixture models, one can also estimate the MAP parameters of 

HMRF using an EM algorithm. Following the procedures of EM described in Chapter 2, we iteratively 

update the estimates as below: 

1. Start with initial parameter set !(0) . 

2. Calculate the likelihood distribution P(t ) (yi | xi,!xi
)  given by (3.2.8) 

3. Using the current parameter set !(t )  to estimate the labels by MAP estimation: 

x(t ) = argmax
x!X

{P(y | x,"(t ) )P(x)}

= argmin
x!X

{U(y | x,"(t ) )+U(x)}
   (3.2.9) 

    The implementation of the MAP estimation is discussed in the next section 

4. Compute the posterior distribution for all possible l ! L  and all voxels yi: 

P(t ) (l | yi ) =
N(yi;!l )P(l | xNi

(t ) )
P(t ) (yi )

   (3.2.10) 

    where N(yi;!l )  is the Gaussian distribution of yi with parameter !l = (µl,!l ) . 

    The marginal probability   

P(t ) (yi ) = N(yi;!l )P(l | xNi
(t ) )

l!L
"    (3.2.11) 

    Here we have 

P(l | xNi
(t ) ) = 1

Z
exp(! Vc (l, x j

(t ) ))
j"Ni

#    (3.2.12) 

     Vc(l,x) is called the clique potential of field x, which is discussed in the next section 

5. Use P(l | xNi
(t ) )  to update the parameters of Gaussian as in (2.12) and (2.13) 

 

3.2.4 MAP Estimation 

 

In (3.2.9) we introduce the total posterior energy in order to find x’s MAP estimate: 



www.manaraa.com

 24 

x = argmin
x!X

{U(y | x,")+U(x)}    (3.2.13) 

The total posterior energy has two compositions: the likelihood energy and the prior energy. the 

likelihood energy is defined by 

U(y | x,!) = U(yi | xi,!)
i
" = [1

2
(yi #µxi

)$xi
#1(yi #µxi

)T + ln$xi
]

i
"   (3.2.14) 

It’s easy to see that the likelihood energy is proportional to the minus log-likelihood of the P(x|y): 

logP(x | y)!"U(x | y)  

Note that  U(x | y) =U(y | x)+U(x)+ c is the posterior energy, where c is a constant and the prior 

energy function U(x) has the form 

U(x) = Vc (x)
c!C
"   (3.2.15) 

which is the sum of clique potentials Vc(x) over all the cliques C. A clique is defined as a subset of sites 

in in which every pair of distinct sites are neighbors. The value of clique potential depends on the local 

configuration and physical properties of the clique. In the context of image segmentation, a clique 

potential is usually used to characterize the influence from adjacent voxels on voxel i. For this project, 

we define the clique potential of voxel i as the number of its adjacent voxels who have different labels: 

Vc (xi ) =
1
2
(1! Ixi ,x j ).    (3.2.16) 

where x j ! xNi , and 

Ixi ,x j =
0, xi ! x j
1, xi = x j

"
#
$

%$
   (3.2.17) 

3.3 Non-parametric Bayes Models 
 

So far we have discussed a distance-based, or cost-based clustering technique: spectral clustering; and a 

model-based clustering approach: hidden Markov random field model. The principal problem with 

these two methods s how to decide the number of clusters K. A recently very active field study 

provides some ways to tackle this problem, that is the non-parametric Bayes model. The non-

parametric Bayes models also feature in mixture models, but unlike the Gaussian mixture models, they 

are infinite mixture models, which allows the number of clusters to grow as the population of data 

increases. They don’t impose a priori knowledge of the cluster number K.  

In this section, I will give a brief introduction to a typical non-parametric Bayes model, the Dirichlet 
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process model (DPM). 

 

3.3.1 The Dirichlet Process 

 

The Dirichlet process (DP) was first developed in Ferguson (1973). The Dirichlet process is a 

distribution over distributions. It is parameterized by a concentration parameter α > 0 and a base 

distribution H, which is a distribution over a space Θ. A random variable drawn from a DP is itself a 

distribution over Θ. A random distribution G drawn from a DP is denoted G ~ DP(α, H).  

The DP is defined implicitly by the requirement that (G(T1),...,G(TK)) has a joint Dirichlet distribution: 

 (G(T1),...,G(TK)) ~Dir(αH(T1), . . . , αH(TK))   (3.3.1) 

 

This means that if draw a random distribution from the DP and add up the probability mass in a region 

T ∈ Θ, then there will on average be H(T) mass in that region. The concentration parameter plays the 

role of an inverse variance; for higher values of α, the random probability mass G(T) will get more 

concentrated around H(T). 

A DP can be viewed from two perspectives: an infinite mixture model and distribution drawn from a 

Dirichlet process. The graphical models in Figure 34 illustrate these two views: 

 
 

 

 

 

3.3.2 Chinese Restaurant Process 

 

The non-parametric Bayes approach addresses the problem of deciding the number of clusters by 

assuming that it is infinite, while specifying the prior over infinite groupings in such a way that it 

favors assigning data to a small number of groups. The prior over groupings is called the Chinese 

restaurant process (CRP; Pitman, 2002), a distribution over infinite partitions of the integers. The 

Figure 3.4 (Sudderth, 2006) Two views of a DP mixture model. Left: infinite 
number of clusters parameters, θk, and π ~ GEM(α). Right: G is drawn from 
a DP.  
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analog is as follows. Imagine a Chinese restaurant with an infinite number of tables, and imagine a 

sequence of customers entering the restaurant and sitting down. The tables are like clusters, and the 

customers are like observations. The first customer enters and sits at the first table. The second 

customer enters and sits with the first person with probability 1
1+!

, or at another table, with 

probability !
1+!

. When the Nth customer enters the restaurant, he may join an occupied table k with 

probability proportional to the number of people already sitting there (denoted Nk ), otherwise, he may 

choose to sit at another table k* with probability proportional to ! . Figure 3.5 shows a scheme of this 

process. 

 

To formalize process, we let zN be the table assigned to the Nth coming customer. A draw from this 

distribution can be generated by sequentially assigning data points to classes with probability below: 

P(zN = k | z1:N!1)

=

Nk

N !1+!
ifk " K

!
N !1+!

otherwise

#

$
%
%

&
%
%

  (3.3.2) 

α in (3.3.2) is the concentration parameter. Obviously, a larger α will produce higher number of 

clusters. 

CRP results in a fact that large clusters tend to get even larger. This is a power rule often referred to as 

Matthew Effect. CRP also demonstrates an important property: the assignment of clusters is 

exchangeable. This means that the order of the customers entering the restaurant won’t affect the table 

assignment scheme at last. The implication of exchangeability is very deep. This thesis doesn’t cover 

detailed discussion about it. The CRP constructs an important sampling scheme of DPM. There are 

Figure. 3.5 (Gershman & Blei, 2012). The Chinese restaurant process. The generative process of the 
CRP, where numbered diamonds represent customers, attached to their corresponding observations 
(shaded circles). The large circles represent tables (clusters) in the CRP and their associated 
parameters (θ). Technically the parameter values {θ} are not part of the CRP per se, but rather belong 
to the full mixture 
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other constructions such as stick breaking construction and Polya urn process. DPM is implemented 

based on CRP in the scope of this thesis. 

 

3.3.3 Fitting The Dirichlet Process Model 

 

The most widely used posterior inference methods in nonparametric Bayes models are Markov Chain 

Monte Carlo (MCMC) methods. The idea of MCMC methods is to define a Markov chain on the 

hidden variables that has the posterior as its equilibrium distribution (Andrieu, et al., 2003). By 

drawing samples from this Markov chain, one eventually obtains samples from the posterior. A simple 

form of MCMC sampling is Gibbs sampling, where the Markov chain is constructed by considering the 

conditional distribution of each hidden variable given the others and the observations (Gershman, 

2012). Thanks to the exchangeability property described in Section 3.3.2, CRP mixtures are 

particularly amenable to Gibbs sampling—in considering the conditional distributions, each 

observation can be considered to be the ‘‘last’’ one and the distribution of (3.3.2) can be used as one 

term of the conditional distribution. The pseudocode of the Gibbs sampling implementation in Figure 

3.6 is borrowed from Neal (2000). This algorithm tend to perform well and efficiently. DPM avoids 

getting stuck in poor local optima as other model-based algorithms, because DPM creates redundant 

clusters at the first stage, which enables it to escape local stationary points. 

Although DPM demonstrates its capability in adaptively clustering data points, it’s still an issue that the 

tuning hyper-parameters (! , for instance) can be tricky. Sometimes it could be as hard as finding the 

right number of clusters. Experiments were conducted to investigate the impact of hyper-parameters on 

the connectivity-based parcellation with our image data. The results are discussed in chapter 6. 

 
 

 
Figure 3.6. Collapsed Gibbs sampler for DPM (Neal, 2000) 
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Chapter 4  COMPRESSED SENSING CROSSING FIBERS 
RESOLUTION 
 

In order to characterize the connectivity of human brain in vivo, the usual diffusion tensor model, is 

inadequate in crossing fiber regions since it assumes a single fiber orientation for each voxel. Several 

high angular resolution diffusion-weighted imaging (HARDI) based techniques, such as spherical 

deconvolution (SD, Tournier, et al., 2004) and q-ball imaging (QBI, Tuch, et al., 2004), have been 

proposed to address this issue, but they are problematic for either time consumption or hardware 

constraints. Recently a new compressed sensing (CS, Landman, et al., 2011) approach has been 

presented. In this chapter, we introduce the basic of compressed sensing and Landman’s method. 

 

4.1 Compressed Sensing 
 

In recent years, compressed sensing (CS) has attracted considerable attention in areas of mathematics 

and engineering. CS builds upon the fundamental fact that we can represent many signals using only a 

few non-zero coefficients in a suitable basis or dictionary. Nonlinear optimization can then enable 

recovery of such signals from very few measurements. One of the most popular techniques for signal 

compression is known as transform coding, and typically relies on finding a basis or frame that 

provides sparse or compressible representations for signals in a class of interest, i.e., transform sparsity 

(Bruckstein, et al., 2009).  By a sparse representation, we mean that for a signal of length N, we can 

represent it with K << N  nonzero coefficients. Candès, Romberg and Tao (2006) and Donoho (2006) 

have elaborated the compressed sensing (or compressive sampling) approach, whose essential idea is: 

instead of compressing after sampling in a high rate, one may want to directly sense the signals in a 

compressed form. Candès, et al. and Donoho showed that a finite-dimensional signal can be recovered 

from a small set of linear measurements, as long as it satisfies three requirements: (a) the desired signal 

satisfies transform sparsity, (b) the transform representation of data is incoherent (noise like), (c) a non-

linear reconstruction is used to enforce both sparsity of the image representation and consistency with 

the acquired data (Lustig, 2008). 

Consider a real-valued, N-length, one-dimensional signal x, which can be viewed as an N ×1 column 

vector in !N  with sparsity K. Consider a general linear measurement process that computes M < N 
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inner products between x and a (fixed) collection of vectors {! j} j=1
M  as in yj = x,! j . Arrange the 

measurements yj in an M ×1 vector y and the measurement vectors ! j
T  in an M × N matrix ! . Then,  y  

can be written as  

y =!x   (4.1.1) 

To recover x from a fewer measurements y, the problem consists of designing a) a stable measurement 

matrix !  such that the salient information in any K-sparse or compressible signal is not damaged by 

the dimensionality reduction and b) a reconstruction algorithm.  

Candès et al.,(2006) and Donoho (2006) have demonstrated that for the matrix !which is incoherent 

with high probability, more specifically, an M × N iid Gaussian matrix, x can be recovered with high 

probability if M ! cK log(N /K ) , with c a small constant. There for the designing of the transform 

matrix at least requires that the number of the random measurements M ! cK log(N /K )<< N . 

The general idea of reconstruction algorithm is to penalize non-zero x using minimum norm constraints.  

 Minimum l2 norm reconstruction 

The classical approach to regularization problems is to find the vector in the translated null space 

with the smallest l2 norm (energy) by solving 

x̂ = argmin !x " y
2
+! x

2   (4.1.2) 

This optimization is convenient because it has analytical. Unfortunately, however, the  l2 

minimization will not find a K-sparse solution. 

 Minimum l0 norm reconstruction 

The l0 norm counts the number of non-zero entries in signal, which exactly accords the motivation 

of the regularization. The optimization question thus becomes 

x̂ = argmin !x " y
2
+! x

0   (4.1.3) 

Unfortunately, it is still problematic because the solution to the l0 norm is both numerically unstable 

and NP-complete (Baraniuk, 2007). 

 Minimum l1 norm reconstruction 

One of the surprisingly results deriving from CS is that the l1 norm  

x̂ = argmin !x " y
2
+! x

1    (4.1.4) 

provides almost  as desirable results as the l0 norm does. This is a numerically tractable convex 

optimization problem that can be solved by conjugate gradient approaches (Kim, 2007) or basis 

pursuit methods (Candès, 2006) 
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4.2 Resolving Crossing Fibers Using CS 
 

In 2008, Landman et al. proposed a crossing fibers resolution method using compressed sensing, which 

they called Crossing Fiber Angular Resolution of Intra-Voxel structure (CFARI). The basic idea of this 

approach is to characterize a DW signal as a sparse linear combination of a set of selected basis of 

possible fiber directions, then reconstruct the real fiber orientations from the basis.  

CFARI models each voxel as a discontinuous collection of compartments where each compartment 

contains one or more bundles of neuronal fibers, each bundle being modeled by a traditional diffusion 

tensor model as we discussed in Chapter 2. The objective is to determine the fractional contributions 

and directions for each compartment by fitting the model to the measured data. For the DTI measures, 

the observed signal intensity Sk at a voxel is a mixture of signals, each one of which is described by the 

Stejskal - Tanner tensor model 

       (4.2.1) 

where S0 is a the intensity on the b=0  image (no diffusion weighting), gk is the diffusion gradient, b is 

the diffusion sensitization strength, N is the number of compartments within a voxel, fi is the mixture 

fraction of each compartment (unknown), Di is the tensor matrix associated with the ith compartment, 

and η is the noise term. 

If we have a reconstruction basis of tensors at orientations which are uniformly distributed over a 

sphere, we can regard the net response of a voxel with crossing fibers as a linear combination of the 

basis vector set. Further we expect the required number of compartments required to model the 

response will be small. We apply compressed sensing techniques to reconstruct the mixture fraction fi 

of the basis from the DTI signals with a sparse representation. We define yk=Sk//S0 , thus Eq. (4.2.1) has 

a matrix form: 

y = Sf +!   (4.2.2) 

where S is the K×N matrix comprising the attenuation terms of the reconstruction basis evaluated at the 

K measurement directions. 

Similar to Eq (4.1.4), we can write the compressed sensing criterion of Eq. (2) for the estimate of f : 

f = argmin f !0 Sf " y 2

2
+! f

1
   (4.2.3) 

In (4.2.3), β is a sparsity regularization parameter controlling the trade-off between the precision of 

model fitting (the l2 norm) and the sparsity requirement (l1 norm). As β approaches zero, the 

Sk
S0
= fie

!bgk
TDigk

i

N

" +!
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optimization problem reduces to ordinary least-squares regression. As β grows, the sparsity term 

dominates, which may lead to very small f values.  The choice of β can significantly influence the 

results estimates.  

Our implementation solves the convex optimization problem in (4.2.3) with an inferior-point method 

(Kim, 2007) that uses a preconditioned conjugate gradient method to compute the search step. 
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Chapter 5  METHODOLOGY 
 

This chapter details the pipeline we adopted for the single and multi – subject CBP and the compressed 

sensing based resolution of crossing fiber regions 

 

5.1. Material And Pre-processing 
 

The data were obtained using single-shot DWI with 64 unique gradient directions, b-value of 

1000mm/s2 and 2 mm isotropic resolution. 16 healthy, adult subjects (at the age ranging from 21 to 53, 

8 males and 8 females) were scanned with a Siemens Trio 3T scanner. Noise and eddy current  

distortions were removed from DW images using FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/; Smith, et 

al. 2004). Then a 2 mm thick cortico-subcortical surface was extracted in each subject’s T1-weighted 

image with FreeSurfer (http://surfer.nmr.mgh.harvard.edu/fswiki, Dale, et al.,1999). We mapped these 

segmentations into the subject’s DWI space and used the voxels along that surface ribbon which lay at 

the gray-white matter interface to define both the target regions and seed voxels for probabilistic 

tractography. 

 

5.2 Generating Tractography 
 

Probabilistic tractography was performed using constrained spherical deconvolution with MRtrix ( 

Tournier, et al., 2007). Tractograms were formed by generating 5000 tracks from each seed voxel and 

retaining only those tracks that reached the gray-white matter interface. A minimum length of 20 mm is 

set to be the constraint when generating the tracks to exclude pathways that end too quickly. The 

distributions of end points of the retained tracks form the tractograms, one per seed voxel. For multi-

subject analysis, brains were mapped to 3D MNI (Beckmann, et al., 2009) space using FSL. 

 

5.3 Fitting the Gaussian Mixture Model 
 

We directly model the tractograms of seed voxels as a distribution of points in 3D MNI space using 

GMMs as introduced in Chapter 2. GMMs are parametric probability density functions that have been 

shown to be useful in approximating densities with complicated shapes. Figure.2.2 shows 3 randomly 

selected tractograms of the seed voxels, and their corresponding Gaussian mixture models. 
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Experiments have shown that setting the number of components to between 15 and 20 is sufficient to 

characterize the shape of a tractogram, little difference in application can be seen within this range. We 

picked 17 as a usually used number of mixtures in this study. The red dots in the bottom pictures in 

Figure 2.2 are the mean of each mixture of the GMMs. 

We take advantage of gmdistribution, a powerful class from the MATLAB © Statistics Toolbox, to fit 

the GMMs. Gmdistribution implements the EM algorithm in an efficient and robust way. Via setting 

the 'Replicates' option within gmdistribution, the fitting of every voxel is repeated for 5 times and the 

result with the largest likelihood is returned in order to avoid falling into local optimum as possible. 

Initial means of mixtures were uniformly randomly selected from the tractograms for initial parameter 

estimation. 

 

5.4 Connectivity-based Parcellation 
 

By employing GMMs, tractograms are parameterized and smoothed. We used the earth mover’s 

distance (EMD, Rubner, 2000) to compute the distance between to tractograms. The EMD corresponds 

to minimize the cost of moving ‘material’ from one distribution to another, and is computed using 

linear programming methods. In the EMD’s point of view, a distribution can be represented by a 

histogram where each bar is represented by its mean (or mode), and by the fraction of the distribution 

that belongs to that bar. We call such a representation the signature of the distribution.  

Given two signatures P = {(pi,ui )}i=1
m  and Q = {(qj,vj )} j=1

n   with size m, n respectively, the EMD 

between P and Q is modeled as a solution to a transportation problem. Treat P as “supplies” located at 

ui and elements in Q  as “demands” at vi. Then pi and qj indicates the amount of supply and demand 

respectively. The EMD is defined as the minimum (normalized work required for resolving the supply-

demand transports: 

EMD(P,Q) = min
F={ fij }

fijdij
i, j
!

fij
i, j
!

 

s.t. 

fij ! pi,j"
fij ! qj,i"

fij =min{ pii" , qjj" }, fij # 0.i, j"

$

%

&
&

'

&
&

     (5.4.1) 
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where F = { fij}  denotes a set of flow, representing the amount transported from the i-th supply to the j-

th demand. dij is called the ground distance between position ui and vj. With a simplified solution to the 

classic transportation problem, the complexity of computing EMD can be reduced to N 2 log2 N , where 

N denotes the scale of the number of signatures (Pele & Werman, 2009).  

The distributions were sampled from the GMM of the tractogram rather than the tractogram itself. The 

sampling strategy works as follows: first, deciding the number of samples, we picked 4 multiplication 

of the number of mixtures, in this case 4!17 = 68  signatures; second, sampling the signatures from the 

GMM using importance sampling; finally, calculating the ground distances by the Euclidean distances 

between each pair of signatures. A distance matrix of one subject’s inferior parietal lobule is shown in 

Figure 3.2 (a). 

The distance (dissimilarity) measures dij then needs to be transformed to similarity measures sij for 

clustering use. I took the exponential transformation: 

sij =
1
2
exp[!

(dij !u)
2

2! 2 ]       (5.4.2) 

in which u and !  denotes the mean and standard deviation of the distances respectively. 

So far, we have got the similarity matrix of the tractograms. Distance-based clustering is to be applied 

to start the connectivity-based parcellation. We employed two clustering schemes to conduct CBP, 

each for a different research purpose.  

Our first problem is the multi-subject CBP of the inferior parietal lobule (IPL). Atlhough the 

connectional structure of IPL is highly heterogeneous, the number of parcels is believed (on 

cytoarchitectonic grounds) to be within the range from 5 to 7 (Caspers, et al., 2008). According to 

Juelich Atlas (Eickhoff, et al. 2005), there are 7 sub-regions within the IPL area of each hemisphere of 

the brain. So 7 clusters are used in our model.  Using a predefined number of clusters, spectral 

clustering was applied to provide an initial partition of the IPL voxels. A clustered distance matrix with 

spectral clustering is displayed in Figure 3.1.2(b). After the initialization, a hidden Markov random 

field (HMRF) model is used to refine the clustering. We treat the sub-region label of the seed voxels as 

the hidden variables and the connectivity profiles as the observations. In the HMRF framework, a 

hidden variable is spatially constrained by its neighbors, i.e. adjacent voxels are expected to have 

similar labeling. To accomplish this, a Markov random field (MRF) is used to model local contextual 

information. As described in Chapter 3, an iterated method is used to infer the hidden variables of the 

HMRF. For the E-step, an exemplar tractogram of each subregion is selected. The exemplar represents 

an “average” connectivity pattern for its sub-region, which was obtained by averaging the tractograms 
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of the voxels with same labels. For the M-step, voxels are re-labeled according to the maximum a 

posteriori of the MRF given the current exemplars. The E-step and M-step were alternated until the 

labeling stopped changing significantly. 

Then we investigated whole brain CBP. To parcellate an arbitrary region of human cortex, the number 

of sub-regions is not well-defined. We thus need to use non-parametric Bayes models to learn the 

number from data. We employed a spectral Chinese restaurant process model introduced by Socher 

(2011). The approach combines non-parametric Chinese restaurant process (CRP) and spectral methods 

for dimensionality reduction. This scheme uses spectral clustering to project the data from a high 

dimensional connectivity space to a lower dimensional Euclidean space (2-D or 3-D); then clusters the 

voxels in this lower dimensional space with Dirichlet process model (DPM). For the whole brain CBP, 

we focused on inferior / superior parietal lobules (IPL/SPL), and precentral / post central gyri. 

 

5.5 Multi-subject CBP 
 

For the study of IPL, after each individual subject was parcellated, subjects were merged, combining 

the tractograms of all subjects at each point in MNI space. The MNI is a standard brain coordinate 

system defined a large series of MRI scans on normal controls (Mazziotta, et al., 1995).  

To create a tractogram for each seed voxel, we uniformly sampled from the tractograms from the 

corresponding voxels in the individual datasets. We then performed CBP on the merged voxels to 

create a joint parcellation map. The map was generated by overlapping the seed voxels of each 

individual subject’s IPL area and merging on a maximum probability basis (Tungaraza, et al., 2012). 

Finally, the joint parcellation map is used in HMRF-based CBP.  Exemplars of each parcel of the atlas 

are extracted and the voxels are grouped based on their similarity in tractograms to the exemplars, i.e., 

the voxels are assigned the label of the closest exemplar. An MRF model is finally used to denoise the 

segmentation. To study the reproducibility of the atlas, we created joint atlases from brains 2-8 and 9-

16 and re-parcellated brain 1 using each of the joint atlases. 

 

5.6 Resolving Crossing Fibers With Compressed Sensing 
 

The experiments of crossing fibers resolution consist two parts: simulation and empirical data. 

Simulation. Two fiber tracts comprising tensors having FA=0.7 (λ1= 2×10−3mm2/s, 

λ2=λ3=0.5×10−3mm2/s) were simulated such that they cross at a certain angle. A typical clinical DTI 
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sequence with b-value of 1000 s/mm2, and Rician noise at SNR of 25:1 was simulated. Based on Eq 

(4.2.1), a set of basis was built with high angular resolution to uniformly cover the hemisphere, see 

Figure 5.1. A voxel with crossing fibers is supposed to be constructed by a linear combination of 

vectors from the basis. The vectors are shuffled in the basis such that the transform matrix is incoherent 

in this domain. The optimization problem in (4.2.3) is solved by the convex optimization MATLAB 

package CVX (http://cvxr.com/cvx/) developed by Michael Grant and Stephen Boyd. 

 

                           
Experiments were conducted on various numbers of measurements (M=16~128), basis vector 

resolution (N= 128~1024), and crossing angle (0°~ 90°). The performance of the simulation was 

evaluated by a cone of uncertainty error metric:  

• Given a simulated set of crossing fibers R : {t j,wj} j=1
M  and the estimate set E : { fi,vi}i=1

N , where 

vi, wj are the orientation of the vectors and fi, tj are the weights of corresponding vectors, The 

fundamental cone is defined by the  collection of estimated directions closest to a reference 

direction whose total estimated partial fraction do not exceed the reference fraction 

!! = !!,!! ∠(!!,! ,!!)
!!!!
!!!      (5.6.1) 

vi
k,j denotes the kth closest estimated vector to reference vector wj. 

• The estimate’s cone of uncertainty to the reference is written as the squared weighted sum of 

angular error 

!(E,R) =
t j
2

j
! " j

t j
2

j
!

    (5.6.2) 

 

• To make the metric symmetric 

! =
!(E,R)+!(R,E)

2
   (5.6.3) 

 

Figure 5.1. 1024 bases vectors uniformly 
distributing over a hemisphere. 
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Considering the randomness in the solution of the CS problems, each simulation was repeated for 50 

times, such that an average angular error could be obtained.  

 

Empirical Data. The reconstruction basis was built as for the simulation. The CS based crossing fibers 

resolution approach was applied to the DWI volumes obtained with 128 gradients and b-value = 

1000s/mm2. Each voxel in the DWI would have a vector containing the orientations and fractions of the 

non-zero bases.  A probabilistic tractography algorithm was implemented and imported to the MRtrix 

framework. The CS based tractograms were compared to that obtained from constrained spherical 

deconvolution (CSD) methods both visually and by their CBP results. 
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Chapter 6  RESULTS AND ANALYSIS 
 

The results in this chapter are focused on the multi-subject CBP of IPL, single-subject CBP of 

SPL/SPL and pre/post central, and crossing fibers resolution using CS. 

 

6.1 Multi-subject CBP of IPL 

 

The spectral clustering-HMRF parcellation pipeline was applied to the 16 subjects (see Figure. 6.1). 

The IPL areas are divided into 7 sub-regions. The 7 parcels are basically vertically aligned, which is 

consistent with the cytoarchitectonic literature (Caspers, et al., 2008; Tungaraza, et al.,  2012). Our 

approach to CBP gave partitions on IPL that were consistent across subjects. 

 
We then performed HMRF parcellation jointly on all 16 subjects, as described in section 5.5. The joint 

segmentation is compared to a cytoarchitectonic atlas of IPL in Figure 6.2. The map was generated on a 

MAP basis. The consistency of the joint parcellation with the Juelich atlas was evaluated by the Dice 

coefficient. An average Dice coefficient of 65% (69% on the left hemisphere and 61% on the right 

hemisphere, respectively, Table 6.1 was observed.  

Figure. 6.1. Single-subject CBP on 16 subjects (right 
hemisphere); area corresponds to yellow rectangle in Figure. 6.2.  
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Table 6.1 Dice Coefficients of Single/Multi-subject CBP (%)	
  

 Single-subject CBP Multi-subject CBP 
Subjects Left Hemi Right Hemi Average Left Hemi Right Hemi Average 
1 72.5 58.3 65.4 70.5 64.6 67.6 
2 67.5 60.1 63.8 73.8 67.5 70.7 
3 65.3 60.5 62.9 70.6 64.1 67.4 
4 66.9 63.5 65.2 70.1 64.1 67.1 
5 69.1 62.8 65.9 72.2 66.0 69.1 
6 67.5 63.3 65.4 72.5 67.6 70.0 
7 72.9 62.4 67.7 70.6 66.9 68.7 
8 69.6 60.3 64.9 72.0 64.5 68.3 
9 68.3 63.4 65.9 71.2 64.4 67.8 
10 71.7 60.6 66.2 70.1 65.4 67.7 
11 69.0 60.2 64.6 70.6 67.4 69.0 
12 70.5 61.2 65.9 72.4 65.1 68.7 
13 70.3 61.6 65.9 72.0 66.0 69.0 
14 70.5 61.1 65.8 71.2 65.8 68.5 
15 66.7 60.8 63.7 70.5 64.7 67.6 
16 72.1 62.7 67.4 73.6 65.5 69.6 
Mean 69.4 61.4 65.4 71.5 65.6 68.6 

 

 
Exemplars were extracted from each sub-region of the merged map. Classifiecation based on the joint 

exemplars was conducted on the 16 individual subjects. The new parcellations (see Figure. 6.3) appear 

generally smoother and more consistent with each other and with the Juelich atlas than the results of 

single-subject CBP (Figure.6.2). 

a b 

Figure 6.2. Multi-subject parcellation of IPL (right 
hemisphere). (a) HMRF parcellation; (b) FSL Juelich 
atlas. Yellow rectangle indicates area of Figure. 6.1. 
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To examine the effects of the joint atlas on the individual parcellations, we separately parcellated brain 

1 using brains 2-8 and 9-16, respectively, to make the joint atlas.  Figure 6.4 shows that the results are 

very similar  (average Dice coefficient, 69%), suggesting that the parcellation results are relatively 

independent of the brains used to compute the joint atlas. 

 

 
 

 

Figure.6.3. CBP on 16 individual subjects using exemplars extracted 
from the merged CBP atlas.  The configurations of the segmentation 
shows high resemblance with the Juelich atlas.  Compare with Figure. 
6.2, in which each subject was parcellated separately.  

Figure. 6.4. CBPs of brain 1 using joint atlas generated 
from brains 2-8 (a) and 9-16 (b), respectively, showing 
that the CBP results are relatively independent of the 
subjects chosen to create the atlas. 

a b 
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6.2 CBP With Non-parametric Model 

 

In this section, we learn the number of parcels within areas of interest. We examine the impact of the 

hyper-parameters on the number of parcels and the driven force in connectional structure segmenting 

the cortical regions. 

When I tried to extend CBP on IPL to the whole brain CBP, I found that most of the cortical regions, 

such as the SPL and the pre/postcentral gyri, are not so heterogeneous as IPL.  Consequently some 

aspects of the CBP need to be modified, including the strategy of generating tractographies. Among the 

options of tracks generation, whether the tracks grow unidirectionally or bidirectionally matters. By 

default, MRtrix generates probabilistic tractography in two directions from each seed voxel, which 

results in a dominant cluster of the end points of tracks around their seed voxel, leading to troubles in 

the fitting GMMs and calculating the distance between tractograms, see Figure 6.5(a). The new 

tractographies were generated with a –unidirectional command. The artifacts of the dominant near-seed 

cluster is ruled out and the true parcellation revealed (Figure 6.5(b)). According to the motor 

homunculus representation (Marie & Hoehn, 2009) in primary motor cortex, primary motor cortex 

(M1), premotor cortex (PMA) and supplementary motor cortex (SMA), is responsible for the planning 

and executing body movements. And the functionality partition is aligned horizontally, from top to 

bottom, controlling lower limbs, upper limbs and face respectively. The primary sensory cortex 

(postcentral) has the corresponding anatomical divisions with sensory functionalities. Thus an ideal 

CBP of the pre/post centrals is supposed to contain 6 sub-regions, with 3 for precentral and postcentral 

each. Figure 6.5(b) is obtained with the –unidirectional option, which generates the tracks in one 

direction. In the segmentation obtained by bi-directional tractographies (see Figure 6.5(a)), one can 

hardly find the boundary between precentral and postcentral.   
 

 
 
 

 

a b b a 

Figure 6.5 (a) CBP using bi-directional tracks (b) CBP using uni-directional tacks 
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The hyper parameters of DPM, such as the concentration parameter ! , also play a crucial role in the 

clustering. Generally speaking, the larger !  is, the more clusters will be found. In my implementation, 

!  is set to be a fraction of the size of the data n, i.e. ! = n
b

. We tested the b in the range of 5~5000 

(default is 50), larger b implies smaller ! , thus fewer clusters. The results are shown in Figure 6.6. As 

b decreases, !  increases, and the number of clusters increases. The hyper parameter provides 

reasonable results in the range ! = n
500

~ n
50

.  

 

 

 

We then compare the boundaries of anatomical segmentation given by the FSL atlas and our 

connectional segmentation.  

 
 
 
  

 

b=5000 b=500 b=50 b=5 

Figure 6.6. The impact of the concentration parameter on the number of clusters c. From left 
to right: b=5000, c=3; b=500, c=6; b=50, c=6; b=5, c=18 

Figure 6.7 (left) FSL segmentation of the pre/post centrals. (right) CBP of the pre/post 
centrals. The white line shows the pre/post centrals boundary of FSL segmentation 
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Figure 6.7 compares CBP to the FSL segmentation in the pre/post central areas. For CBP, precentral 

and postcentral each is divided into 3 sub-regions, horizontally aligned. The boundary between 

precentral and postcentral is obvious. The boundary is consistent with that of the FSL segmentation, 

except for that the boundary shifts slightly to left in CBP compared to FSL.  

 
 

 

 

Figure 6.8 compares CBP to the FSL segmentation in the SPL and IPL areas. The non-parametric CBP 

pipeline parcellates the SPL into 5 sub-regions and IPL 6 sub-regions (unlike we did using spectral 

clustering). The boundaries are generally similar besides some disagreements which are marked by the 

arrows.  

 

6.3 Resolving The Crossing Fibers Regions Using Compressed Sensing 

 

Simulations. We first fixed the angle between two crossing fibers (K=2) at 90°, and tested the impact 

of the size of the reconstruction basis with a) 48 measurements and b) 128 measurements. Larger basis 

size suggests higher spatial resolution of the basis vectors. Figure 6.9 shows that the angular error 

between simulating data and estimation is reduced with the increase of N (from 128 to 1024). With 

fewer measurements, the mean error and the standard deviation will get bigger. 

 

Figure 6.8 (left) FSL segmentation of superior parietal lobule (SPL, yellow) and IPL 
(brown). (right) CBP of SPL and IPL. The white line shows the pre/post centrals 
boundary of FSL segmentation The arrows mark the major disagreements between two 
boundaries 
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We then investigated the impact of the number of measurements M (Figure 6.10) and the crossing 

angle (Figure 6.11) on the accuracy of the reconstruction. The number of measurements varies from 16 

to 128 with a fixed N=1024. The both the mean and the standard deviation of the angular error 

decreases as the M grows. While for M > 20 , the decrease slows down. Consider the requirement of 

the measurement number in section 4.1,  

M ! K log2(N /K ) = 2* log2(1024 / 2) =18  , 

which agrees with the results in (Figure 6.10). 

                                      

 

In Figure 6.11, the angle between two crossing fibers ranges from 0° to 90°. The error first increases 

then drops. The intuitive explanation is that it is easier to resolve to fibers when the crossing angle is 

either small or big. When the angle is small (~0°), they can be treated as a single fiber; whereas large 

Figure. 6.9 Impact of reconstruction resolution (number of basis N). 

(red)M=48; (blue) M=128. 

 

Figure 6.10. Impact of number of 
measurements (number of gradients M). 
Angular error decreases as M grows 

Figure 6.11. Impact of crossing angle. The 
angular error first increases then drops as 
the crossing angle changes from 0° to 90°. 
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angles (~90°) have a higher tolerance for the spatial resolution of the basis. 

 

Empirical Data.  

Figure. 6.12 displays examples of resolved crossing fibers within single voxels. Figure 6.12(a1) 

indicates a typical region of crossing fibers at the junction of corpus callosum and white matter. A 

random voxel was selected from the yellow rectangular region to show in Figure 6.12(a) and other 4 

voxels in Figure 6.12(b). Figure 6.12(a) compares the resolution results between constrained spherical 

deconvoluiton (CSD) given by MRtrix and those obtained by CS with different numbers of 

measurements (a3, M=64; a4, M=32). Both CS reconstructions appear similar to the CSD result; the 

estimate with 64 gradients looks slightly shaper than that with 32 gradients. 

The top pictures in Figure 6.12(b) show 4 voxels resolved by CSD and the bottom ones show the 

corresponding CS estimates with 64 gradients. Though minor differences in shape and orientations can 

be observed, results obtained by compressed sensing approach are highly consistent with those by 

traditional methods, and with lower cost. 

 

 
 

 

1  

3  

2  

4  

a  b  

Figure 6.12. (a1) a region of crossing fibers; (a2) voxel resolved using CSD with 128 measurements; (A3) 

same voxel resolved using CS with 64 measurements; (a4) voxel resolved using CS with 32 measurements. 

(b) Examples of other 4 voxels with different orientations and # of fiber crossed: (top) by CSD; (bottom) 

by CS. 
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We also applied the compressed sensing approach to tractography. 5000 tracks were generated from 

one seed voxel in each scenario. Results acquired with different numbers of measurements (M=32,48, 

64) are compared to the tractography generated with CSD with 128 measurements in Figure 6.13. For 

the cases M=48 and 64, the more tracks and details were present than M=32.  No significant difference 

can be observed in the M=48 and 64 cases, compared to CSD results. 

 

 

 
 

The CS-based tractography was further tested with the CBP process. We follow the multi-subject CBP 

pipeline described in section 5.5 with probabilistic tractography generated using CS. A new CBP atlas 

for IPL was built and compared to the former results. Figure 6.14(c) shows the atlas obtained from the 

CS-based CBP; Figure 6.14(a,b) are the same in Figure 6.2. The Dice coefficients of CS-based map is 

63% in average, 60% in the right hemisphere and 66% in left hemisphere.  

c1  d1  b1  a1  

c2  d2  b2  a2  

Figure 6.13. Two sets of tractography results with different numbers of measurements (a) K=32 

(CS) (b) K=48(CS)  (c) K=64(CS)  (d) K=128(CSD). Two seeds (yellow cross in the top and 

bottom graphs respectively) ware planted within corpus callosum. A probabilistic framework of 

tractography was conducted . The tracks graphs were overlapped on fraction anisotropy maps.  
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a b c 

Figure. 6.14. (a) CBP atlas using CSD generated tractograms; (b) FSL Juelich atlas; (c) 
CBP atlas using CS generated tractograms 
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Chapter 7  CONCLUSION AND DISCUSSION 
 

A multi-subject connectivity-based parcellation pipeline is presented via a new GMM tractogram in 

this thesis. The research may benefit both neuroscience and clinical practice. 

 

7.1             Achievements 
 

In the study of multi-subject CBP of IPL, we described a GMM-HMRF approach to connectivity-based 

parcellation. By employing this methodology, we defined a new description of connectivity profile 

(GMM); also we were able to segment human IPL areas taking into consideration the spatial interaction 

of adjacent voxels (HMRF). We demonstrated a high similarity between our partition and the standard 

cytoarchitectonic map. Moreover, a CBP atlas was built by merging subjects’ parcellation. Using the 

exemplars extracted from the CBP atlas, both the computational complexity and segmentation 

consistency of new parcellation are improved. A multi-subject CBP approach provides a non-invasive 

method to explore human cortical connectivity, and should significantly enhance our understanding of 

normal and abnormal brain function. 

We then extended our CBP framework to the other cortical areas, including pre/post centrals and SPL, 

by combining the spectral methods with non-parametric Bayes models. The spectral non-Bayes models, 

Dirichlet process model in particular, enables the data learn the number of clusters automatically. 

Cluster number is significantly controlled by the hyper-parameter , the clusters become fewer when 

decreases. We found, however, that the choose of  is flexible to some extend, since the applicable range 

is relatively large: n/500~n/50, where n is the size of dataset. By investigating the CBP of pre/post 

central areas, we found that the connectional factor driving the parcellation consents with the motor 

homunculus model, which implies that the consistency between connectivity and functionality. 

The general agreement between FSL segmentation, which is obtained from a cytoarchitectonics-based 

atlas, and the connectivity-based parcellation also verifies this argument. 

In the research of crossing fiber resolution, the compressed sensing technique shows great promise in 

resolving crossing fiber issues. With compressed sensing, the number of measurements can be reduced 

to 32 or 48 (48 is more favorable in the this study) with higher efficiency and moderate accuracy. It 

works well with small or big crossing angles. Compressed sensing results can be applied to 

tractography with a probabilistic or deterministic framework. The experiments combined with CBP 

demonstrate its availability in application. 
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7.2            Disadvantages 
 

The research has the following weaknesses. First, GMMs are sensitive to outliers. Some tractography 

with very low probability may exert a vital influence on the fitting of the models. Our method is not 

very robust for such outliers. Second, the spatial resolution of GMM is relatively low and easy to be 

affected by noise. For example, the thalamic connections are crucial for identifying the connection 

pattern of each cortical segment, but due to its small size, thalamus doesn’t earn enough credits in 

GMM-based CBP. Third, although mathematically elegant, spectral clustering doesn’t apply to large 

scale clustering problems (like whole brain CBP), since it requires matrix decomposition. Other 

derivative spectral techniques, such as graph cuts may be worth considering.  

7.3             Future Work 
 
Our methods have proved its potential in connectivity-based parcellation. The research in future may 

follow several directions: 

1.  Extending to the whole brain CBP. Due to the high variation in the connectional characteristics 

over different cortical regions, our pipelines can be currently applied to certain regions locally, 

which limits its use in the whole brain study. Prospective solutions are either finding global 

approaches, or using a predefined segmentation as a prior and iteratively updating the segments 

using Bayes rule. 

2. An atlas of whole brain CBP is to be constructed. Therefore future CBP can be performed by 

registratered to the atlas. Also, developing atlas (from infants to adults) and disease specific atlas 

are interesting directions of research. 

3. Taking advantage of more information from tractography. Our representation of connectivity 

patterns by the distribution of end points has left much important information carried by the entire 

tracks, such as the length, the pathway, and connections along the tracks. For example, many 

connections between brain segments are “passing-by” rather than “ending-at”; our methods are 

inadequate in characterizing the former situation. A new representation is expected to take account 

of all the 3D information of tractography. 

4. Combining with the functional studies. It's presumed that the structural partitions are consistent 

with regional functionalities. Finding the mapping between connectional and functional 

segmentations can also verify the conclusion of both studies. 

5. Refining the CS-based crossing fiber resolution, so that scanning time can be significantly 

reduced. 
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